

MEKANISME PROF OF WORK (PoW) DAN DELEGATED PROOF OF STAKE (DPoS) UNTUK MAKSIMALISASI KEAMANAN, SKALABILITAS. DAN DESENTRALISASI

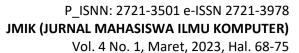
Dedi Irawan 1)

1-3 Program Studi ilmu Komputer, Fakultas Ilmu Komputer Universitas Muhammadiyah Metro

Jalan Gatot Subroto No. 100, Yosodadi, Metro Timur, Kota Metro dedi.mti@gmail.com

Abstrak: Web 3.0 atau dikenal juga dengan Web3 atau Web 3 merupakan salah satu terobosan dalam dunia internet. Kehadiran Web 3.0 tidak hanya dapat menafsirkan secara akurat apa yang diketikkan ke dalam mesin pencarian, tetapi juga benar-benar memahami semua yang dikirimkan, baik melalui teks, audio, atau media lainnya. Trilema blockchain yaitu terdesentralisasi, dapat diskalakan, dan aman adalah masalah yang dipelajari dengan baik oleh para peneliti dan pelaku pasar. Mekanisme konsensus Satoshi Plus pada blockchain CORE yang memanfaatkan hashrate penambangan Bitcoin dan Ethereum Virtual Machine (EVM). Solusi untuk trilema tersebut adalah konsensus Satoshi Plus yang menggabungkan Proof of Work (PoW) dan Delegated Proof of Stake (DPoS) untuk memanfaatkan kekuatan masing-masing sekaligus memperbaiki kekurangannya masing-masing.

Kata Kunci: Satoshi Plus, Web3, Trilema blockchain, blockchain CORE


Abstract: Web 3.0 or also known as Web3 or Web 3 is one of the breakthroughs in the internet world. Web 3.0 presence can not only accurately interpret what is typed into a search engine, but also truly understand everything that is transmitted, whether through text, audio, or other media. The blockchain trilemma of being decentralized, scalable, and secure is a well-studied issue by researchers and market participants. Satoshi Plus consensus mechanism on the CORE blockchain that leverages the mining hashrate of Bitcoin and the Ethereum Virtual Machine (EVM). The solution to the trilemma is the Satoshi Plus consensus that combines Proof of Work (PoW) and Delegated Proof of Stake (DPoS) to harness each other's strengths while correcting their respective shortcomings.

Keywords: Lungs: Expert System: RAD (Rapid Application Development)

PENDAHULUAN

Blockchain adalah salah satu teknologi yang paling banyak diadopsi saat ini namun memiliki kekurangan dan permasalahan. Masalah terbesar dengan blockchain terdesentralisasi saat ini adalah trilemma blockchain. Blockchain apa pun hanya dapat berfokus pada dua dari tiga keunggulan utama blockchain, yaitu desentralisasi, keamanan, dan skalabilitas. Pengembang harus mengorbankan salah

satu dari tiga aspek blockchain ini. Bitcoin memaksimalkan desentralisasi keamanan, mengorbakan namun skalabilitas. Bitcoin berhasil menjadi aset terdesentralisasi karena dikuasai oleh satu pihak mana pun, sehingga mempunyai tingkat keamanan yang mustahil ditembus. Namun, membuat skalabilitas Bitcoin menjadi sangat rendah karena kecepatan transaksi memakan waktu yang cukup lama.

Vitalik Buterin adalah pendiri Ethereum merupakan sosok pertama yang memopulerkan istilah Blockchain Trilemma pertama kali ketika ia bersama timnya menghadapi isu ini saat mengembangkan Ethereum. Kini, banyak tim pengembang blockchain yang menghadirkan inovasi berupa pembuatan layer sebagai solusi menyelesaikan permasalahan Blockchain Trilemma ini.

Blockchain

Blockchain pada dasarnya adalah sebuah buku kas digital yang aman dan dapat dipercaya, karena memiliki 4 karakteristik utama: terdesentralisasi, konsensus. immutable atau tidak dapat diubah, dan transparan. Buku kas ini terdiri dari kumpulan blok-blok yang berisi data transaksi, vang saling terkait satu sama dan membentuk rantai. karenanya teknologi ini disebut dengan blockchain. Yang membedakan blockchain dengan buku kas atau database lainnya adalah struktur datanya. Hal ini karena mengumpulkan blockchain data-data transaksi ke dalam satu blok dengan kapasitas yang terbatas.

Bitcoin

Pada Oktober 2008, seseorang bernama Satoshi Nakamoto menerbitkan sebuah tulisan 8 halaman yang berjudul "Bitcoin: A Peer-to-Peer Electronic Cash System." Tulisan ini dirilis ke dalam milis yang beranggotakan ahli kriptografi dan ilmu komputer. Pada awalnya, tulisan ini hanya dibahas dan didiskusikan dalam sebuah forum kecil. Jaringan Bitcoin kemudian diluncurkan pada 2009, berdasarkan panduan implementasi yang dipublikasikan oleh Nakamoto dan sudah melewati proses revisi oleh sejumlah programmer. Jaringan Bitcoin diamankan menggunakan metode kriptografi yang hingga kini belum pernah diretas, menjadikannya jaringan moneter teraman di dunia. Bitcoin dibangun di atas catatan digital terdistribusi yang disebut blockchain. Bitcoin adalah salah satu aset crypto pertama yang mengenalkan konsep baru tentang uang yang sepenuhnya hidup internet. Mata uana

terdesentralisasi ini telah diadopsi secara luas dan menjadi salah satu instrumen investasi yang populer saat ini. Setiap transaksi dalam Bitcoin dijamin melalui kriptografi. Untuk memverifikasi transaksi dan memastikan tidak akan ada pengeluaran ganda, Bitcoin menggunakan proses yang disebut proof-of-work atau penambangan, dan proses ini dilindungi oleh kriptografi yang rumit.

Ethereum

Ethereum merupakan kripto kedua terbesar di dunia setelah Bitcoin, dan salah satu blockchain tersibuk. Hal ini karena Ethereum adalah pelopor platform smart contract. yang menjadi landasan dibangunnya berbagai aplikasi terdesentralisasi (decentralized applications/dApps) dan iuga Web3. Blockhain Ethereum memiliki kemampuan yang lebih kompleks dan lebih fleksibel daripada Bitcoin. Hal ini karena Ethereum memperbolehkan developer membuat aplikasi secara bebas di atas blockchain Ethereum. Ethereum diciptakan oleh seorang programmer dari Rusia-Kanada bernama Vitalik Buterin. Ethereum pertama kali diusulkan oleh Buterin pada tahun 2013 dalam dokumen yang berjudul, "Ethereum: The Ultimate Smart Contract and Decentralized Application Platform". Ethereum resmi melakukan transisi penuh jaringan dari mekanisme konsensus proofof-work (PoW) ke mekanisme konsensus proof-of-stake (PoS) atau The Merge.

Desentralisasi

Desentralisasi pertama kali dibuat menggunakan teknologi blockchain. Blockcahin pertama adalah klien Bitcoin, yang diciptakan tahun 2009. Ketika seseorang mengirimkan Bitcoin ke orang lain, transaksi tidak diverifikasi oleh sebuah otoritas tersentral. Adanya desentralisasi yang membentuk sebuah jaringan peer to peer, sehingga mengirim mata uang digital semudah mengirim email karena tidak lagi menggunakan bank sentral dalam proses transaksi. Sehingga semua orang dapat berpartisipasi blockchain pada

menggunakan mekanisme seperti proof of work atau proof of stake.

Konsensus

Dalam lingkup cryptocurrency, konsensus dapat dijelaskan sebagai mekanisme yang digunakan oleh teknologi blockchain untuk memvalidasi adanya data baru. Blockchain tak jauh berbeda dari ledger (buku besar) pada lembaga keuangan konvensional di mana akan ada banyak transaksi yang bertumpuk di dalamnya. Dalam blockchain, satu transaksi (block) dengan transaksi lainnya akan saling berkaitan membentuk satu rantai transaksi (chain). Jaringan ini dapat diakses oleh semua orang, namun hanya pihak-pihak tertentu saja yang bisa menyuntingnya. Berikut deskripsi tentang prinsip-prinsip mekanisme konsensus:

PoW(Proof of Work)

Proof of Work (PoW) adalah pemimpin dari semua jenis mekanisme dalam blockchain. merupakan blockchain Bitcoin kali memperkenalkan pertama menggunakan algoritma tersebut. Dalam konsep PoW, para penambang lah yang bertugas untuk memvalidasi transaksi (validator). Validator harus memecahkan perhitungan matematika terlebih dahulu sebelum bisa menambahkan blok baru. Bila mereka berhasil dan menunjukkan "bukti kerja" atau PoW, maka blok yang mereka tambang bisa ditambahkan ke dalam blockchain.

Proof of Stake (POS)

Proof of Stake (PoS) merupakan algoritma yang didesain sebagai alternatif dari PoW. Dengan sistem ini, para penambang tak perlu menggunakan energi komputasi yang besar untuk melakukan transaksi. Sebagai gantinya, mereka harus berinvestasi pada Algoritma PoS aset kripto. akan memvalidasi transaksi sesuai dengan jumlah aset yang dipegang oleh setiap penambang. Dengan kata lain, semakin banyak aset yang dipegang, semakin besar pula kemungkinan untuk terpilih melanjutkan proses validasi transaksi. Proses ini dianggap jauh lebih efisien dan cepat dibanding PoW. Namun, PoS

terhadap tindak monopoli di mana pemegang aset paling banyak bisa mengukuhkan pengaruhnya. ini membuat pengguna lainnya harus menyimpan asetnya lebih lama untuk meningkatkan profit.

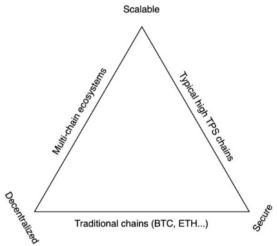
Delegated Proof Of Stake (DPoS)

Algoritma konsensus Delegated Proof of Stake (DPoS) dikembangkan oleh Daniel Larimer, pendiri BitShares, Steemit, dan EOS pada tahun 2014. Delegated Proof of Stake atau DPoS adalah mekanisme konsensus blockchain yang dirancang untuk mengatasi keterbatasan protokol konsensus seperti Proof of Stake dan Proof of Work. Dianggap sebagai cara yang lebih demokratis, terjangkau, dan efisien untuk memvalidasi transaksi dalam iaringan DPoS beroperasi melalui blockchain, sistem iaminan agunan. Di bawah mekanisme DPoS, pengguna memilih untuk mendelegasikan hak validasi blok kepada delegasi atau saksi dengan otoritas tinggi. Meskipun tidak populer digunakan oleh proyek cryptocurrency saat ini, solusinya menawarkan evolusi dari PoS tradisional.

Immutable

Immutability adalah kemampuan teknologi blockchain untuk memastikan data transaksi masa lalu tidak dapat diubah. Semua transaksi menggunakan bitcoin atau aset kripto lainnya dicatat secara permanen dan dapat dilihat oleh semua orang, sehingga mustahil bagi entitas mana pun untuk mengubah, mengganti, atau memalsukan data yang disimpan di blockchain.

Immutability pada blockchain dapat membantu meningkatkan kepercayaan dan sistem audit saat ini. Immutability juga dapat menghemat waktu dan uang untuk audit dengan membuat verifikasi informasi jauh lebih mudah. Teknologi ini juga dapat membantu banyak bisnis meningkatkan efisiensi secara keseluruhan dengan adanya catatan lengkap dari seluruh aktivitas bisnis mereka.


Transparan

Dalam konteks finansial dan keuangan. James Chen dari Investopedia mengungkapkan bahwa transparansi adalah segala akses yang dimiliki oleh investor ke dalam informasi keuangan vang diperlukan tentang perusahaan. Informasi tersebut meliputi tingkat harga, kedalaman pasar, dan laporan keuangan yang telah diaudit. Kehadiran blockchain dianggap menjadi standar baru dalam transparansi di dunia keuangan. Blockchain memungkinkan transparansi data yang belum pernah ada sebelumnya. Dengan karakteristik "trustless", segala desentralisasi dan riwayat transaksi yang terjadi di dalam blockchain bisa diakses oleh siapa saja, namun di saat yang sama tidak bisa dimanipulasi oleh siapapun.

METODE

Trilema Blockchain adalah masalah yang dipelajari dengan baik oleh para akademisi dan pelaku pasar. Ini menyatakan bahwa semua mata uang kripto, termasuk Bitcoin, Ethereum, dan lainnya harus melakukan pertukaran antara keamanan optimal, skalabilitas, dan desentralisasi, seringkali memprioritaskan dua elemen dengan mengorbankan elemen ketiga, seperti yang ditunjukkan pada Gambar 1

Gambar 1. Trilema Blockchain

Ketiga elemen blockchain tersebut adalah: **Desentralisasi**

Menentukan sistem blockchain yang tidak bergantung pada suatu titik kontrol terpusat. Ada berapa banyak node dan validator. Hal ini sekaligus yang menjadi pembeda antara blockchain dengan jaringan tradisional yang masih serba tersentralisasi.

Skalabilitas

Jaringan blockchain harus mempunyai skalabilitas yang baik, dalam yaitu dapat memproses transaksi pengguna dalam jumlah yang besar dan cepat tanpa harus meningkatkan biaya transaksi. Skalabilitas menjadi penting karena berkaitan dengan penggunaan secara masal. Jika sebuah blockchain memiliki kecepatan pemrosesan transaksi yang lambat, pengguna tidak akan menggunakannya.

Keamanan

Keamanan jaringan sebuah blockchain dapat berbeda antara satu dengan yang lainnya. Dalam sebuah blockchain yang bersifat publik, validator atau pengguna blockchain menggunakan internet untuk memvalidasi transaksi dan mencapai konsensus. Hal ini membuat blockchain dalam posisi yang rentan terhadap serangan para peretas. Oleh karena itu, aspek keamanan merupakan hal yang penting bagi setiap blockchain.

Dalam membangun sebuah blockchain. terdapat tiga aspek utama dipertimbangkan oleh tim pengembang, yakni desentralisasi, keamanan, skalabilitas. Idealnya, sebuah blockchain memaksimalkan bisa ketiga aspek tersebut. Namun, dalam praktiknya, tim pengembang dihadapkan pada pilihan untuk "mengorbankan" salah satu aspek agar bisa memaksimalkan dua aspek lainnya. Kondisi terjebak dalam dilema (dalam hal ini trilema) inilah yang kemudian disebut sebagai trilema blockchain. Co-Ethereum, Founder Vitalik merupakan sosok yang mempopulerkan konsep trilema blockchain.

Solusi untuk trilema di atas adalah konsensus Satoshi Plus, yang beroperasi Jaringan CORE. Konsensus Satoshi Plus menggabungkan Proof of Work (PoW) dan Delegated Proof of Stake (DPoS) untuk

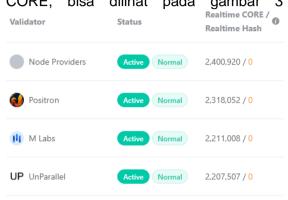
memanfaatkan kekuatan masing-masing sekaligus memperbaiki kekurangannya masing-masing. Secara khusus, kekuatan komputasi Bitcoin menjamin desentralisasi. Delegated Proof of Stake (DPoS) mempunyai performa blockchain lebih berskala dan dapat memproses lebih banyak transaksi per detik (TPS), dibandingkan dengan PoW dan PoS.

HASIL DAN PEMBAHASAN

Blockchain CORE adalah evolusi dari basis kode Geth yaitu klien eksekusi Ethereum yang menangani transaksi, penerapan, dan eksekusi kontrak pintar dan berisi komputer tersemat yang dikenal sebagai Mesin Virtual Ethereum. CORE memanfaatkan peningkatan yang dilakukan oleh tim Binance Smart Chain (BSC) untuk menambah throughput yang lebih besar dan transaksi yang lebih murah

melalui hard fork. Hard fork adalah suatu keadaan dimana satuan kripto terbagi menjadi dua, sehingga menghasilkan kode lama dan kode baru yang dimana kedua kode ini tidak kompatibel satu sama lain. Blockchain CORE memiliki perbedaan utama yaitu didasarkan pada Konsensus Satoshi Plus, yang bergantung pada Proof of Work (PoW) bersama Delegated Proof of Stake (DPoS).

Dari modifikasi yang dilakukan, jaringan tetap terdesentralisasi tanpa mengorbankan kinerja yang terlihat dalam sistem konsensus PoW tradisional. Selain itu, dengan nilai hibrid yang berdasarkan kekuatan hash Bitcoin yang didelegasikan membuat trafik menjadi lancar, untuk validator dan hadiah/reward yang dapat diikuti oleh siapa saja. Ilustrasi konsensus Plus dapat dilihat pada gambar 2.



Gambar 2. Ilustrasi peran dan komponen utama

Komponen utama, peran, dan alur kerja Validator: Memiliki tanggungjawab untuk memproduksi blok dan melakukan validasi transaksi di jaringan CORE. Untuk menjadi validator memerlukan pendaftaran dengan jaringan dan mengunci deposit CORE yang

dapat dikembalikan untuk dimasukkan ke dalam set validator sesuai aturan pemilihan validator. Siapa pun dapat melakukan deposit dan menjadi validator di jaringan CORE, bisa dilihat pada gambar 3

Gambar 3. Daftar Validator Aktif

Relay

Bertanggung jawab untuk menyampaikan header blok Bitcoin (BTC) ke jaringan CORE. Untuk melakukan relay, calon relay harus mendaftar ke jaringan dan mengunci deposit CORE yang dapat dikembalikan. Siapapun dapat melakukan deposit dan menjadi relayer di Core.

Penambang BTC

Miner atau penambang bertanggung jawab mengamankan jaringan Bitcoin melalui PoW. Agar faktor kekuatan hash mereka meniadi konsensus Satoshi penambang harus mendelegasikan kekuatan hash mereka ke validator yang dijalankan oleh pihak ketiga. Pendelegasian adalah tindakan nondestruktif, artinya dengan mendelegasikan CORE, mereka mengarahkan kembali pekerjaan mereka, memilih antara mengamankan Bitcoin dan mengamankan CORE.

Pemegang CORE

Pemegang mata uang CORE, mata uang dasar rantai CORE. Semua pemegang CORE dapat berpartisipasi dalam staking dengan mendelegasikan kepemilikannya kepada validator.

Penguji

Memiliki tanggung jawab membuat laporan perilaku jahat di jaringan. Siapa pun dapat

bertindak sebagai pemverifikasi di jaringan CORE. Tanda verifikasi yang berhasil dapat mengakibatkan pemotongan (hadiah atau taruhan) atau memenjarakan validator yang nakal.

Pemilihan Validator

Mekanisme di mana terdapat 21 validator teratas dipilih untuk dimasukkan ke dalam set validator. Validator dipilih dalam kaitannya dengan skor hybrid mereka pada setiap putaran. Untuk memastikan TPS lebih stabil, validator "langsung" diperbarui setiap 200 blok selama putaran sehingga validator lain tidak perlu menunggu validator "dipenjara" untuk keseluruhan Putaran.

Skor hybrid

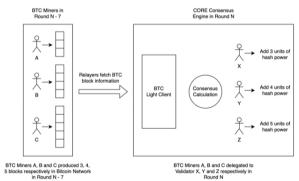
Keluaran dari fungsi protokol yang digunakan dalam perhitungan pemilihan validator. Input ke fungsi adalah kekuatan hash BTC dan CORE yang didelegasikan ke validator.

Round

Siklus waktu untuk CORE dalam memperbarui kuorum validator dan mendistribusikan hadiah/reward, yang saat ini ditetapkan menjadi 1 hari. Setiap hari, 21 validator dengan skor hybrid tertinggi dipilih ke set validator. sehingga bertanggung jawab untuk memproduksi blok di jaringan CORE untuk keseluruhan putaran. Pada blok terakhir dari setiap putaran, akumulasi hadiah untuk putaran tersebut akan dihitung dan didistribusikan dan kuorum validator untuk putaran berikutnya juga akan ditentukan.

Slot

Setiap putaran dibagi menjadi slot-slot dan semua validator dalam kuorum bergiliran memproduksi blok secara berulang-ulang dengan cara berkompetisi hingga akhir putaran. Saat ini, panjang slot diatur ke 3 detik. Di setiap slot, validator yang jujur menghasilkan blok atau gagal melakukannya.



Epoch

Panjang siklus untuk sistem untuk memeriksa status masing-masing validator untuk mengecualikan validator yang dipenjara dari kuorum untuk mencegah mereka berpartisipasi dalam konsensus untuk menjaga TPS lebih atau kurang konstan dalam putaran tertentu. Saat ini, epoch diatur ke 200 slot, yaitu 600 detik atau 10 menit.

Bukti Kerja

Proof of Work (PoW) adalah mekanisme praktis untuk mengimplementasikan terdesentralisasi. PoW tidak jaringan diskriminatif dan memungkinkan siapa saja yang memiliki daya komputasi untuk berpartisipasi dalam penambangan. Memanfaatkan iaringan penambangan **BTC** ada. CORE relaver vang mentransmisikan setiap blok Bitcoin rantai sebagai transaksi ke CORE. Mekanisme penyampaian ini adalah bagaimana Satoshi Plus memvalidasi kekuatan hash yang didelegasikan dengan cara yang tidak dapat dipercaya. Dengan elemen PoW ini, Satoshi Plus mampu

Gambar 4. Relay Daya Hash Penambang BTC

KESIMPULAN

Mekanisme konsensus Satoshi Plus, menggabungkan PoW dan DPoS untuk menyelesaikan "Trilema Blockchain" yang sering dibahas. Peningkatan CORE dalam hal skalabilitas, keamanan, efisiensi, dan desentralisasi bersama kompatibilitas EVM dapat membuka kekuatan aplikasi terdesentralisasi untuk semua orang atau pengembang, pengguna, dan lainnya.

memanfaatkan keamanan jaringan Bitcoin untuk mengamankan CORE.

Relay Daya Hash Penambang BTC

Dengan menggunakan kunci publik dan pribadi mereka, penambang BTC dapat mendelegasikan kekuatan hash mereka ke validator CORE atau mendelegasikan kepada diri mereka sendiri jika mereka memilih untuk menjalankan validator dengan memverifikasi dan menyinkronkan identitas (alamat) mereka pada blockchain BTC dan Inti. Saat relayer mengirimkan transaksi, mereka menyinkronkan blok yang ditambang oleh penambang BTC dengan jaringan CORE. Setiap putaran, jaringan Inti menghitung kekuatan hash BTC yang terkait dengan setiap validator dengan menghitung jumlah blok yang dihasilkan oleh setiap penambang di jaringan BTC pada hari yang sama di minggu sebelumnya. Arsitektur komunikasi pemetaan-rantai diilustrasikan dalam ganbar 4 di bawah ini.

REFERENSI

- [1] Satoshi Nakamoto. (2008) Bitcoin: Sistem Uang Elektronik Peer-to-Peer. https://bitcoin.org/bitcoin.pdf
- [2] Trifecta Blockchain Team. (2019). The Blockchain TriLemma Solved. http://pramodv.ece.illinois.edu/pubs/White paper2019-9.pdf.
- [3] Docs Ethereum. (2023). Proof-of-stake (PoS).

https://ethereum.org/en/developers/docs/c onsensus-mechanisms/pos/ . (Diakses tanggal 3 Maret 2023).

- [4] Decrypt. (2022). What Is 'The Merge'? Ethereum's Move to Proof of Stake. https://decrypt.co/resources/what-merge-ethereum-move-proof-stake . (Diakses tanggal 3 Februari 2023).
- [5] River Financial. (2023). What Is Proof-of-Work? (https://river.com/learn/what-is-proof-of-work/ . (Diakses tanggal 3 Februari 2023).

[6] COREDAO White Paper. (2023). White paper

v1.0.5. https://docs.coredao.org/core-white-paper-v1.0.5/ . (Diakses tanggal 8 Februari 2023).