Estimasi Model Fixed Effect Pada Analisis Regresi Data Panel Dengan Metode Least Square Dummy Variable (LSDV)

  • Junia Rahma Nur Imani Universitas Lampung, Indonesia
  • Khoirin Nisa Universitas Lampug, Indonesia
  • Dorrah Aziz Universitas Lampung, Indonesia
  • Nusyirwan Universitas Lampung, Indonesia
Keywords: analisis regresi data panel, model fixed effect, variabel dummy

Abstract

Data panel merupakan gabungan antara data cross section dan data time series.  Salah satu model analisis regresi data panel adalah model fixed effect.  Model fixed effect mempunyai asumsi bahw  intersep berbeda untuk setiap individu, tetapi koefisien slope konstan.  Estimasi dilakukan dengan menggunakan variabel dummy untuk menjelaskan adanya perbedaan intersep antar individu.  Penelitian ini bertujuan untuk mengestimasi model fixed effect pada analisis regresi data panel dengan metode least square dummy variable dan menerapkannya pada data upah minimum provinsi di Indonesia tahun 2014-2017.  Berdasarkan hasil penelitian yang telah dilakukan dengan menggunakan estimasi parameter  =  untuk model fixed effect pada analisis regresi data panel upah minimum provinsi di Indonesia diperoleh model sebagai berikut,  = 5.248452+  + 0.007415 + 0.002882 + 1.63E-07dengan,  = upah minimum provinsi,    = indeks harga konsumen,    = tingkat partisipasi angkatan kerja,    = produk domestik regional bruto dan   = variabel dummy,      k = 1,2, ...,33 (provinsi).

Panel data is a combination of cross section data and time series data. One of panel data regression analysis model is the fixed effect model. The fixed effect model has the assumption that intercepts are different for each individual, but the slope coefficient is constant. Estimation is done by using dummy variables to explain the existence of intercept differences between individuals. This study aims to estimate the fixed effect model in panel data regression analysis using the least square dummy variable method and apply it to the provincial minimum wage data in Indonesia in 2014-2017.  Based on the results of the research that has been done by using paremeter estimator  =  for fixed effect model in the panel regression analysis on provincial minimum wage data in Indonesia, we obtained as follows,  = 5.248452+  + 0.007415 + 0.002882 + 1.63E-07 with,  = provincial minimum wage,   = consumer price index,   = labor force participation rate,   = regional gross domestic product,  = dummy variable ,    k = 1,2, ...,33 (province).

References

Athey, S., Bayati, M., Doudchenko, N., Imbens, G., & Khosravi, K. (2021). Matrix completion methods for causal panel data models. Journal of the American Statistical Association, 116(536), 1716–1730. https://doi.org/10.1080/01621459.2021.1891924

Barros, L. A. B. C., Bergmann, D. R., Castro, F. H., & Silveira, A. D. M. da. (2020). Endogeneity in panel data regressions: methodological guidance for corporate finance researchers. Revista Brasileira de Gestão de Negócios, 22, 437–461. https://doi.org/10.7819/rbgn.v22i0.4059

Basak, G. K., & Das, S. (2017). Intercept homogeneity test for fixed effect models under cross-sectional dependence: some insights. Journal of Econometric Methods, 6(1), 20150004. https://doi.org/10.1515/jem-2015-0004

Bell, A., Fairbrother, M., & Jones, K. (2019). Fixed and random effects models: making an informed choice. Quality & Quantity, 53, 1051–1074. https://doi.org/10.1007/s11135-018-0802-x

Draper, N. R. (1998). Applied regression analysis. McGraw-Hill. Inc. https://doi.org/10.1002/9781118625590

Hastuti, E. (2019). Pengaruh Indeks Harga Konsumen terhadap Upah Minimum Provinsi di Jawa Tengah. Jurnal Ekonomi dan Pembangunan Daerah, 12(1), 45-58.

Hill, T. D., Davis, A. P., Roos, J. M., & French, M. T. (2020). Limitations of fixed-effects models for panel data. Sociological Perspectives, 63(3), 357–369. https://doi.org/10.1177/0731121419863785

Kropko, J., & Kubinec, R. (2020). Interpretation and identification of within-unit and cross-sectional variation in panel data models. PloS One, 15(4), e0231349. https://doi.org/10.1371/journal.pone.0231349

Moore, D. S. (1977). Generalized inverses, Wald’s method, and the construction of chi-squared tests of fit. Journal of the American Statistical Association, 72(357), 131–137. https://doi.org/10.1080/01621459.1977.10479921

Nguyen Thai, D., Minh, P. Van, Phan Hoang, C., Ta Duc, T., Nguyen Thi Cam, N., & Nguyen Thi, D. (2021). Bending of symmetric sandwich FGM beams with shear connectors. Mathematical Problems in Engineering, 2021(1), 7596300. https://doi.org/10.1155/2021/7596300

Novais, L., & Faria, S. (2021). Comparison of the EM, CEM and SEM algorithms in the estimation of finite mixtures of linear mixed models: a simulation study. Computational Statistics, 36(4), 2507–2533. https://doi.org/10.1007/s00180-021-01088-1

Panichi, F., Goździewski, K., & Turchetti, G. (2017). The reversibility error method (REM): a new, dynamical fast indicator for planetary dynamics. Monthly Notices of the Royal Astronomical Society, 468(1), 469–491. https://doi.org/10.1093/mnras/stx374

Rahardja, D., & Kusuma, A. (2020). Analisis PDRB terhadap Upah Minimum Provinsi di Indonesia Tahun 2015-2019. Jurnal Ekonomi Regional, 15(2), 67-80.

Santoso, B., & Yuliawati, L. (2018). Pengaruh Tingkat Partisipasi Angkatan Kerja terhadap Upah Minimum di Indonesia. Jurnal Ilmu Ekonomi dan Ketenagakerjaan, 8(3), 123-130.

Singh, S., & Sachdeva, T. K. (2020). Financial Performance of Selected IT Companies in India; A Panel Data Approach. International Journal of Arts, Science and Humanities, 7(3), 7–14. https://doi.org/10.34293/sijash.v7i3.411

Siraj-Ud-Doulah, M. (2021). An alternative measures of moments skewness kurtosis and jb test of normality. Journal of Statistical Theory and Applications, 20(2), 219–227. https://doi.org/10.2991/jsta.d.210525.002

Syukron, M., & Fahri, H. M. (2018). Pendekatan Regresi Data Panel untuk Pemodelan Jumlah Angkatan Kerja dan Penanaman Modal Luar Negeri terhadap PDRB Provinsi di Indonesia. Indonesian Journal of Applied Statistics, 1(2), 100–116. https://doi.org/10.13057/ijas.v1i2.26172

Zyphur, M. J., Voelkle, M. C., Tay, L., Allison, P. D., Preacher, K. J., Zhang, Z., Hamaker, E. L., Shamsollahi, A., Pierides, D. C., & Koval, P. (2020). From data to causes II: Comparing approaches to panel data analysis. Organizational Research Methods, 23(4), 688–716. https://doi.org/10.1177/1094428119847280

Published
2025-01-29
How to Cite
Junia Rahma Nur Imani, Khoirin Nisa, Dorrah Aziz, & Nusyirwan. (2025). Estimasi Model Fixed Effect Pada Analisis Regresi Data Panel Dengan Metode Least Square Dummy Variable (LSDV). Sciencestatistics: Journal of Statistics, Probability, and Its Application, 3(1), 1-14. https://doi.org/10.24127/sciencestatistics.v3i1.7525
Section
Articles