PROTOTIPE SMART GUIDANCE STICK TUNANETRA BERBASIS ARDUINO DENGAN SENSOR HC-SR04 SEBAGAI PROJEK DALAM PEMBELAJARAN DIGITAL
Prototype of an Arduino-Based Smart Guidance Stick for the Visually Impaired Using an HC-SR04 Sensor: A Digital Learning Project
Abstract
This study presents the design, development, and evaluation of a Smart Guidance Stick (SGS) that enables visually impaired children to navigate safely while serving as a hands-on digital-learning project for university students. Following the ADDIE R&D framework, researchers analysed user needs, designed an Arduino-based prototype integrating an HC-SR04 ultrasonic sensor, buzzer, lightweight cane body, and battery pack, then built, implemented, and refined the device. Thirty experimental trials conducted with child users in both indoor and outdoor settings produced a mean absolute distance error of 1.13 cm (SD = 0.84 cm) and 80 % detection accuracy for a ≤2 cm error threshold, fulfilling the <3 cm safety margin widely accepted for mobility aids. Although performance trails advanced dual-sensor canes reported in recent literature, SGS offers a low-cost, single-sensor alternative suitable for classroom fabrication. Pedagogically, the project embodies project-based learning principles: students apply coding, electronics, and CAD skills while cultivating empathy and digital literacy through co-design with disabled stakeholders. The hybrid learning mode delivered via the SPADA UM Metro LMS further illustrates inclusive digital education practice. Comparative analysis with prior studies highlights avenues for improvement sensor redundancy, signal-filtering algorithms, GPS or IoT modules, and expanded user experience tests to raise accuracy above 90 % and extend battery life beyond five hours. Overall, SGS demonstrates how affordable assistive technology can enhance blind learners’ autonomy and simultaneously act as a rich instructional object, modelling the integration of engineering design, social responsibility, and accessibility within higher-education curricula
References
Andriana, E., Riyanto, S., & Anardani, S. (2021). Optimalisasi Tongkat Pintar Pendeteksi Lokasi Berbasis Internet Of Things Menggunakan Firebase Realtime Database. Seminar Nasional Teknologi Informasi Dan Komunikasi, 4(1), 417–427. www.arduino.cc
Azzahro, A., & Kurniadi, D. (2017). Penggunaan Tongkat pada Siswa Tunanetra SMALB dalam Melakukan Mobilitas. JASSI_anakku, 18(1), 19–25.
Bangun, R., Penuntun, P., Pintar, T., Tunanetra, P., & Mikrokontroler, B. (2021). Humanis2021. 1(2), 774–785.
Beingolea, J. R., Zea-Vargas, M. A., Huallpa, R., Vilca, X., Bolivar, R., & Rendulich, J. (2021). Assistive devices: Technology development for the visually impaired. Designs, 5(4). https://doi.org/10.3390/designs5040075
Coleman, L., Associate, R., Sarah Field, Pblw., Wagner, K., & Director, E. (2024). PBL Develops EssentialDigital Literacy Skills in thePost-COVID Landscape. 3(2). www.pblworks.org/sites/default/files/2024-03%0APreventing Turnover, Increasing Retention: How PBL Professional Learning Can Help. PBL Evidence Matters 3(1). The Buck Institute for Education.
D’Elia, P., Stalmach, A., Di Sano, S., & Casale, G. (2024). Strategies for inclusive digital education: problem/project-based learning, cooperative learning, and service learning for students with special educational needs. Frontiers in Education, 9(January), 1–15. https://doi.org/10.3389/feduc.2024.1447489
Haslindah, A., Sukirman, S., Hakis, A. W., & Sa’na, N. I. T. (2024). Pengembangan Alat Bantu Jalan Tunanetra Dengan Tongkat Cerdas Berbasis Arduino. ILTEK : Jurnal Teknologi, 19(01), 12–17. https://doi.org/10.47398/iltek.v19i01.108
Hidayat, A. (2022). Jurnal Teknik Informatika Atmaluhur. Jurnal Teknik Informatika Atmaluhur, 6(1), 4.
Hikmah, N., Kasmawati, H., Mutmainna, A., Julivia, C., Kadrina, R. L., Rahmah, F., Indri, W., & Hasmi, S. (2024). Sosialisasi dan edukasi pentingnya menjaga kesehatan mata untuk cegah rabun dini pada anak. 2(2), 63–68.
Lestari, M. W., & Imnadir, I. (2022). Rancang Bangun Tongkat Tunanetra dengan Sensor Ultrasonik Berbasis Arduino Uno. Jurnal Borneo Informatika Dan Teknik Komputer, 2(2), 44–52. https://doi.org/10.35334/jbit.v2i2.3082
Mardhotillah, I., Yesputra, R., & Anggraini, S. (2021). Tongkat Pintar Bagi Penyandang Disabilitas Tunanetra Berbasis Ultrasonic Dan Water Level. JUTSI (Jurnal Teknologi Dan Sistem Informasi), 1(3), 227–234. https://doi.org/10.33330/jutsi.v1i3.1314
Messaoudi, M. D., Menelas, B. A. J., & Mcheick, H. (2024). Integration of Smart Cane with Social Media: Design of a New Step Counter Algorithm for Cane. Internet of Things, 5(1), 168–186. https://doi.org/10.3390/iot5010009
Mufit, C., & Hambali, I. (2022). Rancang Bangun Alat Bantu Tongkat Tunanetra Berbasis Esp32. Jurnal Kajian Teknik Elektro, 7(2), 64–69. https://doi.org/10.52447/jkte.v7i2.6473
Panazan, C. E., & Dulf, E. H. (2024). Intelligent Cane for Assisting the Visually Impaired. Technologies, 12(6). https://doi.org/10.3390/technologies12060075
Studi, P., Elektro, T., Teknik, F., Udayana, U., Jimbaran, K. B., & Water, S. (2021). MIKROKONTROLER. 8(1), 274–285.
Sunardi, Amril Siregar, M., Satria Wiguna, A., idris, I., & Khair, R. (2020). Alat Bantu Jalan untuk Tuna Netra Menggunakan Sensor Ultrasonik. Jurnal Teknologi Manufaktur, 12(01), 2.
Supriyadi, T. (2019). Tongkat Pintar Sebagai Alat Bantu Pemantau Keberadaan Penyandang Tunanetra Melalui Smartphone. Senter, 181–191.
Tanya, M., Diah, K., Rahmah, A., & Florian, H. (2024). Pelatihan Coding Berbasis Project Based Learning ( PjBL ) Menggunakan Platform Scratch untuk Sekolah Dasar. 3(5), 283–291.
Vouglanis, T. (2024). The use of assistive technology by visually impaired students. 20(October), 365–372.
Wibowo, R. A. S., & Sapuguh, I. (2021). Pembuatan Tongkat Bantu Jalan Penyandang Tunanetra Menggunakan Sensor Ultrasonic Dan Motor Dc. Jurnal Ilmiah Scroll: Jendela Teknologi Informasi, 8(2), 97–105. https://doi.org/10.30640/ejournalscroll.v8i2.76


.png)


